Agenda for Friday, April 12, 2024

Constructing new sets

Practice

Reminders

- Office hours Fri 2PM in Locy 203
- Lexam 1 on April 23 in discussion

Warm-up

How many subsets does $S = \{a, b\}$ have? What about $P = \{a, b, c\}$? S has 4 subsets and P has 8 subsets.

 $\mathbf{2}$

3

Constructing new sets

Definition. Let X be a set. The power set of X is the set

 $\mathcal{P} \coloneqq \{A \mid A \subseteq X\}.$

In other words, the power set is the set of all subsets of X.

If X is a finite set with cardinality n, then the power set $\mathcal{P}(X)$ has cardinality 2^n .

Definition. Let X and Y be sets. The Cartesian product of X and Y is the set

$$X \times Y \coloneqq \{(x, y) \mid x \in X \text{ and } y \in Y\}.$$

In other words, the Cartesian product is the set of all ordered pairs, where the first element is from X and the second element is from Y.

Definition. Let $X_1, X_2, X_3, \ldots, X_n$ be a finite list of sets. The Cartesian product of X_1, \ldots, X_n is the set

$$\prod_{i=1}^{n} X_i \coloneqq \{ (x_1, x_2, \dots, x_n) \mid x_i \in X_i \text{ for all } 1 \le i \le n \}.$$

In other words, the Cartesian product of n sets is the set of n-tuples where the i^{th} element comes the i^{th} set.

If $X_1 = X_2 = \cdots = X_n = X$, then the resulting product is also called the Cartesian power X^n

Name:

Practice

- 1. Each Cartesian product below is a subset of \mathbb{R}^2 . Draw each set in the *xy*-plane.
 - (a) $X \times Y$, where $X = \{1, 2, 3\}$ and $Y = \{1, 2\}$. $2 \xrightarrow{\uparrow y} \bullet \bullet \bullet$ $1 \xrightarrow{\downarrow \bullet \bullet} x$ $1 \xrightarrow{\downarrow \bullet \bullet} x$ (b) $X \times Y$, where $X = \mathbb{R}$ and $Y = \mathbb{Z}$. (c) $X \times Y$, where $X = \mathbb{R}$ and $Y = \mathbb{Z}$. (c) $1 \xrightarrow{\downarrow \bullet} x$ $1 \xrightarrow{\downarrow \bullet} x$ $1 \xrightarrow{\downarrow \bullet} x$ $0 \xrightarrow{\downarrow \bullet} -1$
 - (c) $X \times Y$, where $X = \{1, 2, 3\}$ and $Y = \emptyset$ This is the empty set

2. List the elements of the set $\mathcal{P}(\{1,2\}) \times \mathcal{P}(\{3\})$. Be careful with brackets and parentheses!

The 8 elements of the set are listed below.

3. What is the set described? Give a brief explanation.

Note: Let $\mathbb{N} = \{1, 2, 3, \ldots\}$.

(a) $\bigcup_{i \in \mathbb{N}} \mathbb{R} \times [i, i+1].$

This set is the subset of the Cartesian plane \mathbb{R}^2 of all points (x, y) such that $y \ge 1$. We could draw it by shading in all points of \mathbb{R}^2 on and above the horizontal line y = 1

- (b) $\bigcup_{X \in \mathcal{P}(\mathbb{N})} X$ This set is \mathbb{N} .
- 4. If $J \neq \emptyset$ and $J \subseteq I$, does it follow that $\bigcup_{\alpha \in J} A_{\alpha} \subseteq \bigcup_{\alpha \in I} A_{\alpha}$? What about $\bigcap A_{\alpha} \subseteq \bigcap A_{\alpha}$?

 $\bigcap_{\alpha \in J} A_{\alpha} \subseteq \bigcap_{\alpha \in I} A_{\alpha}?$

It does follow that $\bigcup_{\alpha \in J} A_{\alpha} \subseteq \bigcup_{\alpha \in I} A_{\alpha}$. For any element x in $\bigcup_{\alpha \in J} A_{\alpha}$, there exists $\beta \in J$ such that $x \in A_{\beta}$. Since $J \subseteq I$, we know $\beta \in I$ and A_{β} is part of the union on the right-hand side.

The other statement about intersections is false. Since $J \subseteq I$, the intersection of sets of J is the intersection of *fewer* sets, which results in a *larger* final set.